In mathematics, a complex reflection group is a group acting on a finite-dimensional complex vector space, that is generated by complex reflections: non-trivial elements that fix a complex hyperplane in space pointwise. (Complex reflections are sometimes called pseudo reflections or unitary reflections or sometimes just reflections.)
Contents |
Any real reflection group becomes a complex reflection group if we extend the scalars from R to C. In particular all Coxeter groups or Weyl groups give examples of complex reflection groups.
Any finite complex reflection group is a product of irreducible complex reflection groups, acting on the sum of the corresponding vector spaces. So it is sufficient to classify the irreducible complex reflection groups.
The finite irreducible complex reflection groups were classified by G. C. Shephard and J. A. Todd (1954). They found an infinite family G(m,p,n) depending on 3 positive integer parameters (with p dividing m), and 34 exceptional cases, that they numbered from 4 to 37, listed below. The group G(m,p,n), of order mnn!/p, is the semidirect product of the abelian group of order mn/p whose elements are (θa1,θa2, ...,θan), by the symmetric group Sn acting by permutations of the coordinates, where θ is a primitive mth root of unity and Σai≡ 0 mod p; it is an index p subgroup of the generalized symmetric group
Special cases of G(m,p,n):
There are a few duplicates in the first 3 lines of this list; see the previous section for details.
ST | Rank | Structure and names | Order | Reflections | Degrees | Codegrees |
---|---|---|---|---|---|---|
1 | n−1 | Symmetric group G(1,1,n) = Sym(n) | n! | 2n(n − 1)/2 | 2, 3, ...,n | 0,1,...,n − 2 |
2 | n | G(m,p,n) m > 1, n > 1, p|m (G(2,2,2) is reducible) | mnn!/p | 2mn(n−1)/2,dnφ(d) (d|m/p, d > 1) | m,2m,..,(n − 1)m; mn/p | 0,m,..., (n − 1)m if p < m; 0,m,...,(n − 2)m, (n − 1)m − n if p = m |
3 | 1 | Cyclic group G(m,1,1) = Zm | m | dφ(d) (d|m, d > 1) | m | 0 |
4 | 2 | Z2.T = 3[3]3 | 24 | 38 | 4,6 | 0,2 |
5 | 2 | Z6.T = 3[4]3 | 72 | 316 | 6,12 | 0,6 |
6 | 2 | Z4.T = 3[6]2 | 48 | 2638 | 4,12 | 0,8 |
7 | 2 | Z12.T = 〈3,3,3〉2 | 144 | 26316 | 12,12 | 0,12 |
8 | 2 | Z4.O = 4[3]4 | 96 | 26412 | 8,12 | 0,4 |
9 | 2 | Z8.O = 4[6]2 | 192 | 218412 | 8,24 | 0,16 |
10 | 2 | Z12.O = 4[4]3 | 288 | 26316412 | 12,24 | 0,12 |
11 | 2 | Z24.O = 〈4,3,2〉12 | 576 | 218316412 | 24,24 | 0,24 |
12 | 2 | Z2.O= GL2(F3) | 48 | 212 | 6,8 | 0,10 |
13 | 2 | Z4.O = 〈4,3,2〉2 | 96 | 218 | 8,12 | 0,16 |
14 | 2 | Z6.O = 3[8]2 | 144 | 212316 | 6,24 | 0,18 |
15 | 2 | Z12.O = 〈4,3,2〉6 | 288 | 218316 | 12,24 | 0,24 |
16 | 2 | Z10.I = 5[3]5 | 600 | 548 | 20,30 | 0,10 |
17 | 2 | Z20.I = 5[6]2 | 1200 | 230548 | 20,60 | 0,40 |
18 | 2 | Z30.I = 5[4]3 | 1800 | 340548 | 30,60 | 0,30 |
19 | 2 | Z60.I = 〈5,3,2〉30 | 3600 | 230340548 | 60,60 | 0,60 |
20 | 2 | Z6.I = 3[5]3 | 360 | 340 | 12,30 | 0,18 |
21 | 2 | Z12.I = 3[10]2 | 720 | 230340 | 12,60 | 0,48 |
22 | 2 | Z4.I = 〈5,3,2〉2 | 240 | 230 | 12,20 | 0,28 |
23 | 3 | W(H3) = Z2 × PSL2(5), Coxeter | 120 | 215 | 2,6,10 | 0,4,8 |
24 | 3 | W(J3(4)) = Z2 × PSL2(7), Klein | 336 | 221 | 4,6,14 | 0,8,10 |
25 | 3 | W(L3) = W(P3) = 31+2.SL2(3), Hessian | 648 | 324 | 6,9,12 | 0,3,6 |
26 | 3 | W(M3) =Z2 ×31+2.SL2(3), Hessian | 1296 | 29 324 | 6,12,18 | 0,6,12 |
27 | 3 | W(J3(5)) = Z2 ×(Z3.Alt(6)), Valentiner | 2160 | 245 | 6,12,30 | 0,18,24 |
28 | 4 | W(F4) = (SL2(3)* SL2(3)).(Z2 × Z2) Weyl | 1152 | 212+12 | 2,6,8,12 | 0,4,6,10 |
29 | 4 | W(N4) = (Z4*21 + 4).Sym(5) | 7680 | 240 | 4,8,12,20 | 0,8,12,16 |
30 | 4 | W(H4) = (SL2(5)*SL2(5)).Z2 Coxeter | 14400 | 260 | 2, 12, 20,30 | 0,10,18,28 |
31 | 4 | W(EN4) = W(O4) = (Z4*21 + 4).Sp4(2) | 46080 | 260 | 8,12,20,24 | 0,12,16,28 |
32 | 4 | W(L4) = Z3 × Sp4(3) | 155520 | 380 | 12,18,24,30 | 0,6,12,18 |
33 | 5 | W(K5) = Z2 ×Ω5(3) = Z2 × PSp4(3) = Z2 × PSU4(2) | 51840 | 245 | 4,6,10,12,18 | 0,6,8,12,14 |
34 | 6 | W(K6)= Z3.Ω− 6(3).Z2, Mitchell's group |
39191040 | 2126 | 6,12,18,24,30,42 | 0,12,18,24,30,36 |
35 | 6 | W(E6) = SO5(3) = O− 6(2) = PSp4(3).Z2 = PSU4(2).Z2, Weyl |
51840 | 236 | 2,5,6,8,9,12 | 0,3,4,6,7,10 |
36 | 7 | W(E7) = Z2 ×Sp6(2), Weyl | 2903040 | 263 | 2,6,8,10,12,14,18 | 0,4,6,8,10,12,16 |
37 | 8 | W(E8)= Z2.O+ 8(2), Weyl |
696729600 | 2120 | 2,8,12,14,18,20,24,30 | 0,6,10,12,16,18,22,28 |
For more information, including diagrams, presentations, and codegrees of complex reflection groups, see the tables in (Michel Broué, Gunter Malle & Raphaël Rouquier 1998).
Shephard and Todd proved that a finite group acting on a complex vector space is a complex reflection group if and only if its ring of invariants is a polynomial ring (Chevalley–Shephard–Todd theorem). For being the rank of the reflection group, the degrees of the generators of the ring of invariants are called degrees of W and are listed in the column above headed "degrees". They also showed that many other invariants of the group are determined by the degrees as follows:
For being the rank of the reflection group, the codegrees of W can be defined by
An irreducible complex reflection group of rank is generated by or by reflections. It is said to be well-generated if it is generated by reflections ; it is proved that this is equivalent to the property for all . For irreducible well-generated complex reflection groups, the Coxeter number is defined to be the largest degree, . A reducible complex reflection group is said to be well-generated if it is a product of irreducible well-generated complex reflection groups. Any finite real reflection group is well-generated.